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Anderson localization as position-dependent diffusion in disordered waveguides
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We show that the recently developed self-consistent theory of Anderson localization with a position-
dependent diffusion coefficient is in quantitative agreement with the supersymmetry approach up to terms of
the order of 1/ g(z) (with g, the dimensionless conductance in the absence of interference effects) and with
large-scale ab initio simulations of the classical wave transport in disordered waveguides, at least for g,
=(.5. In the latter case, agreement is found even in the presence of absorption. Our numerical results confirm
that in open disordered media, the onset of Anderson localization can be viewed as position-dependent

diffusion.
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I. INTRODUCTION

Anderson localization is a paradigm in condensed-matter
physics.! It consists in a blockade of the diffusive electronic
transport in disordered metals due to interferences of multi-
ply scattered de Broglie waves at low temperatures and at a
sufficiently strong disorder. This phenomenon is not unique
to electrons but can manifest itself for any wave in the pres-
ence of disorder, in particular, for classical waves, such as
light and sound,? and, as shown more recently, for matter
waves.> Although the absence of decoherence and
interactions* for classical waves is appealing in the context
of the original idea of Anderson, serious complications ap-
pear due to absorption of a part of the wave energy by the
disordered medium.’ Extracting clear signatures of Anderson
localization from experimental signals that are strongly af-
fected by—often a poorly controlled—absorption was the
key to success in recent experiments with microwaves,®’
light,® and ultrasound.’

Classical waves offer a unique possibility of performing
angle-, space-, time-, or frequency-resolved measurements
with excellent resolution, the possibility that was not avail-
able in the realm of electronic transport. In a wider perspec-
tive, they also allow a controlled study of the interplay be-
tween disorder and interactions, as illustrated by the recent
work on disordered photonic lattices.!? Interpretation of mea-
surements requires a theory that would be able to describe
not only the genuine interferences taking place in the bulk of
a large sample but also the modification of these interfer-
ences in a sample of particular shape, of finite size, and with
some precise conditions at the boundaries. Such a theory has
been recently developed''"'* based on the self-consistent
(SC) theory of Vollhardt and Wolfle.!> The new ingredient is
the position dependence of the renormalized diffusion coef-
ficient D(r) that accounts for a stronger impact of interfer-
ence effects in the bulk of the disordered sample as com-
pared to the regions adjacent to boundaries. This position
dependence is crucial in open disordered media.'® D(r) also
appears in the supersymmetry approach to wave transport,'’
which confirms that this concept goes beyond a particular
technique (diagrammatic or supersymmetry methods) used in
the calculations.
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The SC theory with a position-dependent diffusion coef-
ficient was successfully applied to analyze microwave'? and
ultrasonic® experiments. The predictions of the theory'3 are
also in qualitative agreement with optical experiments of
Storzer et al.® However, it remains unclear whether the po-
sition dependence of D is just a (useful) mathematical con-
cept or if it is a genuine physical reality. In addition, the
extent to which predictions of SC theory are quantitatively
correct is not known. Obviously, the last issue is particularly
important once comparison with experiments is attempted.

In the present paper we compare the predictions of SC
theory of localization with the known results obtained previ-
ously using the supersymmetry method'® and with the results
of extensive ab initio numerical simulations of wave trans-
port in two-dimensional (2D) disordered waveguides. We
demonstrate, first, that the position-dependent diffusion is a
physical reality and, second, that SC theory agrees with the
supersymmetry approach up to terms on the order of 1/ gé
(with g, the dimensionless conductance in the absence of
interference effects) and with numerical simulation at least
for go=0.5. In the latter case, the agreement is found even in
the presence of absorption.

II. SELF-CONSISTENT THEORY OF LOCALIZATION

We consider a scalar, monochromatic wave u(r)e
propagating in a 2D volume-disordered waveguide of width
w and length L>w. The wave field u(r) obeys the 2D Helm-
holtz equation,

{(V2+ k1 + i€, + Se(r) JJu(r) = 0. (1)

Here k=w/c is the wave number, c is the speed of the wave
in the free space, €, is the imaginary part of the dielectric
constant accounting for the (spatially uniform) absorption in
the medium, and Se(r) is the randomly fluctuating part of the
dielectric constant. Assuming that Je(r) is a Gaussian ran-
dom field with a short correlation length, it is easy to show
that the disorder-averaged Green’s function of Eq. (1),
(G(r,r")), decays exponentially with the distance |r—r'[.*
The characteristic length of this decay defines the mean-free
path €. In this paper we consider quasi-one-dimensional (1D)
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waveguides defined by the condition w <€ < L. The intensity
Green’s function of Eq. (1), C(r,r")=(4m/c){|G(r,r")|?),
obeys self-consistent equations that can be derived following
the approach of Ref. 14. In a quasi-1D waveguide, all
position-dependent quantities become functions of the longi-
tudinal coordinate z only and the stationary SC equations can
be written in a dimensionless form

2 i i ~ " _ et
[ﬁ - agd@ag]c(g’g)_ ae-1'), (2)
1 2 .
%=1+gtoc(§,§)~ (3)

Here é({,é”):(wDO/L)C(r,r’), Dy=c{/2 is the Boltzmann
diffusion coefficient, {=z/L is the dimensionless coordinate,
d($)=D(z)/D, is the normalized position-dependent diffu-
sion coefficient, B=L/L, is the absorption coefficient (with
L,=v€€,/2 and €,=1/ke, the macroscopic and microscopic
absorption lengths, respectively), and g,=(m/2)N{€/L with
N=kw/ the number of the transverse modes in the wave-
guide. These equations should be solved with the following
boundary conditions:

~ N — <0 J A '
g+ Ld(g”)&gc(é“,é“ )=0 4)
at {=0 and /=1. Similarly to the three-dimensional case,'*
these conditions follow from the requirement of vanishing
incoming diffuse flux at the open boundaries of the sample.
7o is the so-called extrapolation length equal to (7r/4)€ in the
absence of internal reflections at the sample surfaces.!” We
will use zo=(7/4)€ throughout this paper. When Egs. (2)—(4)
are solved in the diffuse regime g,>1, the dimensionless
conductance of the waveguide is found to be g,
=(mw/2)N€/(L+2z,) (Refs. 19 and 20) which is close to g
for zp<<L.
In the absence of absorption (B8=0) we can simplify Eq.
(2) by introducing 7=F({)=[§d¢,/d(¢,),

- %é(r, 7)=8(r—17) (5)

with the boundary conditions [Eq. (4)] becoming
~ d
C(r,7) ¥ Toa_C(T, 7)=0, (6)
T

and 7 =F({'), 19=z¢/L. Equations (5) and (6) are readily
solved,

_ (T< + TO)(Tmax+ 0~ 7->)

Tmax T 27'0

C(r,7) , (7)

where 7_=min(7,7’), 7~=max(7,7'), and 7,,,=F(1). We
now substitute this solution into Eq. (3) to obtain

L: ﬂ_ +% (T+ TO)(Tmax+TO_T)
i di g '

(8)

Tmax + 270

This differential equation can be integrated to find 7 as a
function of £. Using d({)=(d1/d{)~" we finally find
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d(0) = {go\p cosh(Npdigo) - [+ (1 — p)Isinh(\pZ/2,)
X {pl(8o+ 10)* - Tzop]}_l , 9)

where p is the solution of a transcendental equation

27 1
éarctanh{—r{l—?(p—l)}}=l. (10)
\p \p 8o

Solving the last equation numerically and substituting the
result into Eq. (9) we can find the profile d({) at any g, and
To=20/ L. In contrast, for >0 Egs. (2)—(4) do not admit
analytic solution and we solve them by iteration: we start
with D(z)=D,, solve Eq. (2) numerically with the boundary
conditions [Eq. (4)] and then find the new D(z) from Eq. (3).
This procedure is then repeated until it converges to a solu-
tion. In typical cases considered in this paper the conver-
gence is achieved after 10-20 iterations.

The simplest object that Egs. (7)—(9) allows us to study is
the average conductance of the waveguide (g). Indeed, the
average transmission coefficient of the waveguide is found
as

dC(z,7' =¢)

T=-D(L) =
Z

z=L

dé(T, T0)

1
T ow dr

max

1 T+ T
—XA, (11)
W Tpax+ 270

where 7,=F({/L). For the waveguide we have (g)xT. A
ratio that emphasizes the impact of localization effects is
(g)/go=T/T,, where T, is the average transmission coeffi-
cient found in the absence of localization effects (i.e., for d
=1): Ty=(€ +z9)/w(L+2z). We find

@ L+2Z0

8o +2z

p-1
28y

(¢ + 7) (12)

Simple analytic results follow for zy=0, when g,=g.
Equation (9) yields
2

_
sinh(Np/go)
ShPI80) _ cosh(vpdiso) (13)

d({) =

and we find

80
Te= " .
\p cotanh(\e’;{?/Lgo) -1

(14)

In the weak localization regime g,> 1 the solution p of Eq.
(10) can be found as a series expansion in powers of 1/g:
p=2g0+1/3+2/45g0—17/540g(2)+‘". If we keep only the
first term p=2g,, substitute it into Eq. (13) and expand in
powers of 1/gy<<1, we obtain D(z)=Dg[1-(2/gy)(z/L)(1
—z/L)]. Keeping terms up to 1/ g(z) in the expression for p and
substituting it into Egs. (12) and (14), expanding the result in
powers of 1/g, and then taking the limit of L/€—o, we
obtain

024205-2



ANDERSON LOCALIZATION AS POSITION-DEPENDENT...

@21 1 1 2

gt (15)
20 3 45g5 945g;

This result coincides exactly with Eq. (6.26) of Ref. 18 ob-
tained by Mirlin using supersymmetry approach, except for a
factor of 2 due to two independent spin states of electrons in
Ref. 18. We therefore proved the exact equivalence between
SC theory and the supersymmetry approach for the calcula-
tion of the average conductance (g) up to terms on the order
of 1/g}.

Deep in the localized regime g,<<1 and Eq. (10) can be
solved approximately to yield p=1+4 exp(-1/g,) (always
for zp=0 and hence for gy=g,). If we substitute this p into
Eq. (13), we obtain D(z) = D{exp(-z/ &) +exp[—(L—z)/ £]}%,
where £=g,L is the localization length. Equations (12) and
(14) then yield

® _2

1
—exr)<— —>, (16)
80 8o 8o

where we made use of the fact that L/€>1 and N>1. In
contrast to Eq. (15), this result differs from the one obtained
using the supersymmetry approach [see Eq. (6.29) of Ref.
18]. Even though the exponential decay of conductance with
1/go=L/&—expected in the localized regime—is reproduced
correctly, both the rate of this decay and the pre-exponential
factor are different. We thus conclude that SC theory does
not provide quantitatively correct description of stationary
wave transport in disordered waveguides in the localized re-
gime.

It is worthwhile to note that the breakdown of SC theory
for go<<1 is not surprising and could be expected from pre-
vious results. Indeed, it has already been noted that for the
time-dependent transmission, SC theory does not apply after
the Heisenberg time f,.'% The stationary transmission coeffi-
cient T of Eq. (11) is an integral of the time-dependent trans-
mission 7(¢): T=[;dtT(r), with the peak of 7(¢) around the
Thouless time t;,=L*/ 7 D,.'> When g~ t,/tp> 1, the inte-
gral is dominated by t<<ty where SC theory applies. The
integration thus yields the correct 7. However, when g <1,
ty is smaller than 75, and the main part of pulse energy arrives
at 1> ty. Such long times are beyond the reach of SC theory,
hence its breakdown for small g,

II1. NUMERICAL MODEL

To test the predictions of the SC model discussed in the
previous section we solve Eq. (1) numerically using the
method of transfer matrices defined in the basis of the trans-
verse modes of the empty waveguide.”'?> To this end, we
represent Je(r) as a collection of M randomly positioned
“screens” perpendicular to the axis z of the waveguide and
characterized by random functions f,(y)=="_ x, (") x,(y,)

M
Se(r) = a2, 8(z-2,)f, (). (17)
r=1

Here x,(v)=(2/w)"? sin(wny/w) are the transverse modes
of the waveguide and y, are chosen at random within the
interval (0,w). z, represent random positions of the screens,
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FIG. 1. (Color online) The average (a) and the variance (b) of
the conductance g of disordered waveguides supporting N=10
(circles) and N=20 (squares) modes are shown versus the inverse of
go- The solid lines marked as SUSY are fits using Eq. (6.23) of Ref.
18, derived using the supersymmetry approach, with €=15.7\ as
the only fit parameter. The solid line marked as SC in (a) is obtained
using the self-consistent theory [Eq. (12)]. Inset in (a): for a given
realization of disorder, wave “trajectories” found by connecting lo-
cal Poynting vectors are superimposed on the distribution of inten-
sity |u(r)|? in a disordered waveguide with w=10.25\ and L=50X\.
Only trajectories that traverse the waveguide are shown.

whereas o measures their scattering strength. Absorption can
be included in the model by making a complex.

In the limit N—<, f,(y) becomes a delta function &(y
—y,), mimicking a pointlike scatterer. By the choice of f,(y)
in Eq. (17) we narrowed the basis to N right- and N left-
propagating modes with real values of the longitudinal com-
ponent of the wave vector. Such modes are often termed
“open channels” in the literature.?! Hence, the total transfer
matrix of the system is a product of M pairs of 2N X2N
scattering matrices corresponding to the random screens po-
sitioned at z, and the free space in between them,
respectively.”? Because the numerical computation of prod-
ucts of a large number of transfer matrices (~10?—10° for
the results in this paper) is intrinsically unstable, we imple-
ment a self-embedding procedure®® which limits the errors in
flux conservation to less than 107'° in all cases. The system
is excited by illuminating the waveguide with N unit fluxes
(one in each right propagating mode) and the wave field u(r)
is computed®>?3 for a given realization of disorder [see the
inset of Fig. 1(a)]. To compute statistical averages, en-
sembles of no fewer than 107 realizations are used.

To estimate the mean-free path € of waves in our model
system we perform a set of simulations for different disorder
strengths and waveguide lengths, exploring both the regime
of classical diffusion (go> 1) and that of Anderson localiza-
tion (go<<1). The results of the simulations are used to com-
pute the dimensionless conductance g, equal to the sum of all
outgoing fluxes at the right end of the waveguide, and then to
study its average value {g) and variance var(g).2* The depen-
dencies of (g) and var(g) on g, are fitted by the analytic
expressions obtained by Mirlin'® using the supersymmetry
approach, with € as the only fit parameter (Fig. 1).2? The best
fit is obtained with €=(15.7=0.2)\. In Fig. 1(a) we also
show Eq. (12) following from SC theory. As could be ex-
pected from the discussion in the previous section, the pre-
diction of SC theory coincides with both the results of the
supersymmetry approach and numerical simulations only for
large g, =0.5.
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IV. POSITION-DEPENDENT DIFFUSION COEFFICIENT

The wave field u(r) that we obtain as an outcome of the
numerical algorithm allows us to calculate the energy density
W(r) and flux J(r),

%, (18)

R e
W) =~ fu(e) + 5[ Vu(r)

J(r) == kc Im[u(r) V u(r)]. (19)

These two quantities formally define the diffusion coefficient
D(z) which, in general, may be position dependent,

D(z) =- M, (20)

d—Z<W(r)>

where the averages (- --) are taken over a statistical ensemble
of disorder realizations as well as over the cross section of
the waveguide. Equation (20) can be used only at distances
beyond one mean-free path € from the boundaries of the
random medium because more subtle propagation effects of
nondiffusive nature start to be important in the immediate
vicinity of the boundaries.*

We first consider nonabsorbing disordered waveguides
described by €,=0 in Eq. (1) and real « in Eq. (17). In Fig.
2 we compare numerical results for D(z) with the outcome of
SC theory for waveguides of different lengths but with sta-
tistically equivalent disorder. Quantitative agreement is ob-
served for L=100-800A, corresponding g,= 0.3—2. For the
longest of our waveguides (L=1600\,g,=0.16), deviations
of numerical results from SC theory start to become visible
in the middle of the waveguide, which is particularly appar-
ent in the logarithmic plot of Fig. 2(b). The mean-free path
£=17.5\ corresponding to the best fit of SC theory to nu-
merical results is only about 10% higher than €=15.7\ ob-
tained from the fits in Fig. 1.

We checked that the results of numerical simulations are
not sensitive to the microscopic details of disorder: D(z) ob-
tained in two runs with different scattering strengths « and
different scatterer densities but equal mean-free paths €
turned out to be the same.

V. EFFECT OF ABSORPTION

The linear absorption is modeled by introducing a non-
zero €, in Eq. (1) and making « in Eq. (17) complex. A link
between €, and « can be established using the condition of
flux continuity. Indeed, for continuous waves considered in
this work the continuity of the flux leads to

(V-J(r)) = (€ )W(r)), (1)

where €,=1/ke,. We checked that within numerical accuracy
of our simulations the proportionality factor ¢/€, indeed re-
mains constant independent of z. Therefore, Eq. (21) allows
us to determine the microscopic absorption length €, as
cW(r))/{V-J(r)) obtained numerically at a given «.
Figure 3 demonstrates the effect of absorption on the
position-dependent diffusion coefficient for a waveguide of
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FIG. 2. (Color online) (a) Position-dependent diffusion coeffi-
cient D(z) in 2D waveguides supporting the same number N=10 of
transverse modes (width w=>5.25\) but having different lengths L.
Disorder is the same for all lengths. Symbols show the results of
numerical simulations, whereas solid lines are obtained from the
self-consistent theory with the mean-free path €=17.5\. Dashed
lines show the approximate results for go>1 (shown for L=100\)
and gy<<1 (shown for L=1600\), with D(0) substituted for Dy, see
text. (b) Same as (a) but in the logarithmic scale.

length L=400\, which is about 25 mean-free paths. For this
waveguide gp==1.3 and the localization corrections are im-
portant. We observe that absorption suppresses the localiza-

\ L = 400X\ s

o0
W
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FIG. 3. (Color online) The effect of absorption on the position-
dependent diffusion coefficient. Symbols are results of numerical
simulations in a 2D waveguide of length L=400\, width w
=10.25\ (N=20), and several values of the macroscopic absorption
length L, indicated on the figure. Lines are obtained from SC theory
with €=17.1\ adjusted to obtain the best fit for the case of no
absorption (lower curve). Dashed line shows D(z) following from
the self-consistent theory with the same €=17.5\ as in Fig. 2 and
illustrates the sensitivity of D(z) to the exact value of €.
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tion correction to the position-dependent diffusion coeffi-
cient. This clearly demonstrates that the absorption
nontrivially affects the transport by changing the way the
waves interfere. Nevertheless, we observe good agreement
between numerical results (symbols) and SC theory (solid
lines). The predictions of SC theory start to deviate from
numerical results only for strong absorption (L,/L=<0.4).
Once again, the mean-free path €=17.1\ obtained from the
fit of SC theory to the lower curve of Fig. 3 is within 10% of
the value estimated from the variance of dimensionless con-
ductance.

VI. CONCLUSIONS

Two important results were obtained in this work. First,
we convincingly demonstrated that the position-dependent
diffusion coefficient is not an abstract mathematical concept
but is a physical reality. The results of numerical simulations
of scalar wave transport in disordered 2D waveguides unam-
biguously show that the onset of Anderson localization mani-
fests itself as position-dependent diffusion. The reduction in
the diffusion coefficient D(r) is much more important in the
middle of an open sample than close to its boundaries, in
agreement with predictions of the self-consistent theory of
localization. Second, we established that for monochromatic
waves in 2D disordered waveguides predictions of the self-
consistent theory of localization are quantitatively correct
provided that the dimensionless conductance in the absence
of interference effects g, is at least larger than 0.5. Moreover,
the self-consistent theory yields a series expansion of the
average conductance (g) in powers of 1/g, that coincides
exactly with the expansion obtained using the supersymme-
try method'® up to terms on the order of 1/gg. This was not
obvious a priori because of the numerous approximations
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involved in the derivation of self-consistent equations.'* The
agreement between theory and numerical simulations is good
in the presence of absorption as well, which has a particular
importance in the context of the recent quest for Anderson
localization of classical waves that heavily relies on confron-
tation of experimental results with the self-consistent
theory.”>!%13 Deep in the localized regime (g,<0.5), the
self-consistent theory loses its quantitative accuracy but still
yields qualitatively correct results (exponential decay of con-
ductance with the length of the waveguide and of the diffu-
sion coefficient D with the distance from waveguide bound-
aries). It would be extremely interesting to see if the ability
of the self-consistent theory to provide quantitative predic-
tions still holds in three-dimensional systems where a mobil-
ity edge exists. In particular, the immediate proximity of the
mobility edge is of special interest.

Note added. After this paper was submitted for publica-
tion, a related preprint appeared.?® In particular, the authors
of that work show that the self-consistent theory does not
apply to 1D disordered media, which is consistent with our
results because gy~ €/L is always small in 1D, provided that
the condition L> € assumed in this paper is fulfilled.
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